Меню

Алюминиевые части кузовов автомобилей

Ремонт алюминиевого кузова

При­вет­ствую Вас на бло­ге kuzov.info!

В этой ста­тье рас­смот­рим неко­то­рые аспек­ты ремон­та алю­ми­ни­е­во­го кузова.

Алю­ми­ний не новый металл в авто­мо­би­ле­стро­е­нии. Неко­то­рые авто­мо­би­ли 1930 – х годов уже име­ли части кузо­ва, изго­тов­лен­ные из алю­ми­ния. Исполь­зо­ва­ние алю­ми­ния в авто­мо­би­ле­стро­е­нии сни­жа­ет вес авто­транс­пор­та и при этом это очень проч­ный металл.

Ford F‑150 с алю­ми­ни­е­вым кузовом

Алю­ми­ний в соста­ве кон­струк­ции кузо­ва име­ют, напри­мер, такие авто­мо­би­ли, как, Mercedes-Benz S, CL и SL , BMW 5- и 6‑серий, Chevy Corvette, Jaguar XJ , Range Rover, Porsche Panamera, 991, 981, и 918; Audi TT , A8 и R8 ; Acura NSX ’s, Ferrari, Maserati, Lamborghini, Bentley, Rolls Royce, Aston Martin, Lotus и Tesla. Так­же, алю­ми­ни­е­вые эле­мен­ты име­ют неко­то­рые авто­мо­би­ли Honda и Ford (Ford F‑150).

Ремонт кузо­ва, име­ю­ще­го дета­ли из алю­ми­ния нель­зя назвать более слож­ным, чем вос­ста­нов­ле­ние кузо­ва из ста­ли, он про­сто отли­ча­ет­ся. Перед нача­лом ремон­та кузо­ва из алю­ми­ния нуж­но полу­чить опре­де­лён­ные зна­ния и сле­до­вать опре­де­лён­ным пра­ви­лам. При рабо­те с алю­ми­ни­ем мож­но лег­ко допу­стить ошиб­ку. Повре­жде­ния при непра­виль­ном ремон­те будут более зна­чи­тель­ные и труд­но испра­ви­мые, чем при рабо­те со ста­лью. Соблю­дая опре­де­лён­ные пра­ви­ла и обре­тя необ­хо­ди­мые зна­ния, рабо­ту с алю­ми­ни­ем мож­но назвать даже более лёк­гой, чем со ста­лью. Алю­ми­ний более подат­ли­вый металл, чем сталь.

Внеш­ние алю­ми­ни­е­вые пане­ли кузо­ва изго­тав­ли­ва­ют из тер­мо­об­ра­бо­тан­но­го алю­ми­ния. Такой алю­ми­ний варьи­ру­ет­ся по твёр­до­сти от T0 (очень мяг­кий и пла­стич­ный) до T6 (настоль­ко твёр­дый, что при попыт­ке согнуть деталь из тако­го алю­ми­ния, она лома­ет­ся). Боль­шин­ство внеш­них алю­ми­ни­е­вых пане­лей кузо­ва име­ют твёр­дость T4 . Они доста­точ­но твёр­дые и устой­чи­вые к появ­ле­нию вмятин.

Кузов­ные дета­ли из алю­ми­ния, в отли­чие от сталь­ных, не име­ют «памя­ти». Они, так ска­зать, не стре­мят­ся вер­нуть­ся в свою пер­во­на­чаль­ную фор­му после повре­жде­ния. Поэто­му нуж­но исполь­зо­вать дру­гие тех­ни­ки для воз­вра­та их в пер­во­на­чаль­ное состояние.

Алю­ми­ний ста­но­вит­ся более жёст­ким и твёр­дым, если его выпра­вить после повреждения.

Алюминий хорошо выправляется под воздействием тепла

Вмя­ти­ну луч­ше все­гда нагре­вать. Если начать вытя­ги­вать вмя­ти­ну алю­ми­ни­е­вой пане­ли на холод­ную, то панель может порваться.

Тем­пе­ра­ту­ра нагре­ва долж­на варьи­ро­вать­ся от 200 до 300 гра­ду­сов по Цель­сию. Таким обра­зом, алю­ми­ний теря­ет жёст­кость, при нагре­ве до 300 гра­ду­сов и ста­но­вит­ся мяг­ким. Рас­плав­ля­ет­ся он при тем­пе­ра­ту­ре 640 гра­ду­сов по Цельсию.

Нуж­но пом­нить, что алю­ми­ний нагре­ва­ет­ся и осты­ва­ет очень быст­ро, быст­рее ста­ли. Это нуж­но учи­ты­вать в про­цес­се ремон­та. Алю­ми­ний не крас­не­ет перед плав­ле­ни­ем и непод­го­тов­лен­ный мастер может запро­сто про­жечь металл.

При нагре­ве, вмя­ти­на будет терять напря­же­ние и немно­го выпра­вит­ся сама.

Осуществляя ремонт алюминиевого кузова нужно использовать отдельные инструменты

Частич­ки, остав­ши­е­ся на инстру­мен­тах от преды­ду­ще­го ремон­та сталь­но­го кузо­ва, могут стать при­чи­ной галь­ва­ни­че­ской кор­ро­зии алю­ми­ния в даль­ней­шем. Гово­ря об инстру­мен­тах, сто­ит уточ­нить, что для рих­тов­ки алю­ми­ни­е­вых пане­лей кузо­ва нуж­но при­ме­нять рих­то­воч­ные инстру­мен­ты, пред­на­зна­чен­ные спе­ци­аль­но для рабо­ты с алю­ми­ни­ем. Обыч­но это молот­ки, кон­тро­по­ры, кузов­ные гла­дил­ки, сде­лан­ные из алю­ми­ния, пла­сти­ка, тита­на или нержа­ве­ю­щей ста­ли. Неко­то­рые, спе­ци­аль­но обра­бо­тан­ные инстру­мен­ты из ста­ли, могут при­ме­нять­ся при ремон­те алю­ми­ни­е­во­го кузо­ва, не вызы­вая галь­ва­ни­че­ской кор­ро­зии. Обыч­но это инстру­мен­ты с отпо­ли­ро­ван­ной поверх­но­стью и нержа­ве­ю­щей ста­лью. К тому же, глад­кая отпо­ли­ро­ван­ная поверх­ность рих­то­воч­но­го инстру­мен­та более акку­рат­но воз­дей­ству­ет на более мяг­кий, чем сталь алюминий.

Для ремон­та алю­ми­ни­е­во­го кузо­ва тре­бу­ет­ся спе­ци­аль­ное оборудование

Если рядом ремон­ти­ру­ют­ся два авто­мо­би­ля, сде­лан­ные из раз­ных метал­лов, то луч­ше пыле­со­сить мусор от ремон­та, а не сду­вать сжа­тым воз­ду­хом. При сду­ва­нии, части­цы ста­ли могут попасть на алю­ми­ни­е­вые дета­ли. К тому же, это умень­шит пожа­ро­опас­ность. Это свя­за­но с тем, что алю­ми­ни­е­вая пыль лег­ко возгорается.

Луч­ше обу­стро­ить отдель­ную зону для ремон­та авто­мо­би­лей с алю­ми­ни­е­вым кузовом.

Сварка алюминия отличается от сварки стальных деталей

Как было напи­са­но выше, алю­ми­ний нагре­ва­ет­ся очень быст­ро и нуж­но вни­ма­тель­но сле­дить за про­цес­сом свар­ки, что­бы не про­жечь алю­ми­ни­е­вую деталь кузо­ва насквозь. Для ремон­та алю­ми­ни­е­вых кузо­вов тре­бу­ет­ся спе­ци­аль­ное сва­роч­ное обо­ру­до­ва­ние. Для свар­ки тон­ких листов алю­ми­ния при­ме­ня­ют аргон­но-дуго­вую свар­ку TIG .

Итак, систе­ма­ти­зи­руя выше­ска­зан­ное, назо­вём три основ­ных отли­чия алю­ми­ния от стали.

Источник статьи: http://kuzov.info/remont-aluminievogo-kuzova/

Алюминиевый кузов — хорошо или плохо? Ищем «плюсы» и «минусы» использования алюминия в автомобилестроении

Все мы, с раннего детства знаем, что такое алюминий, а также об основных его свойствах, ну например о том, что к нему не пристает магнит, он очень легкий и мягкий, а также не подвержен коррозии. Однако лишь немногие из нас знают о том, что из этого, казалось бы, мягкого и не прочного металла, изготавливают кузовные детали и даже целые кузова.

В этой статье я хочу поднять тему использования алюминия в изготовлении автомобильных кузовных деталей. Я постараюсь взвесить все «за» и «против» если таковые имеются, и перечислить преимущества и недостатки алюминиевых кузовов . Интересно? Тогда читайте дальше.

Предисловие.

Начну, пожалуй, с того, что чистый алюминий в автомобилестроении встречается крайне редко, чаще всего это сплавы с добавлением различных добавок, позволяющих улучшить свойства этого металла. Например, алюминиевый кузов автомобиля или отдельные его части производят из алюминия, в который добавлен магний, кремний или марганец. Такие добавки позволяют получить более прочный, но при этом такой же легкий и пластичный металл.

Читайте также:  Ниссан x trail новом кузове

Алюминиевые детали производятся различными способами, в зависимости от ее назначения. Наиболее распространенные способы производства: ковка, литье, штамповка, а также экструзия. Самый популярный вид изготовления алюминиевых деталей — это конечно же, литье. При помощи этого метода отливают детали двигателя, различные корпусы, а также некоторые детали подвески.

Первопроходцем в «алюминиевом направлении» стала компания «Ауди», которая в 1994 году запустила серийное производство Audi A8, у которого кузов был полностью изготовлен из алюминия. В те времена это решение было революционным и хорошенько всколыхнуло мир автомобилестроения. Вес алюминиевого A8 составлял всего 231 кг. Впечатляет, не так ли?

Среди плюсов алюминиевого кузова можно выделить следующие моменты:

1. Прекрасное соотношение массы и прочности. Алюминий на 60% легче стали при равных размерах и объемах. Благодаря этому, кузовные детали получаются более легкие, отсюда меньшая масса и существенная экономия топлива, ну и естественно меньше вредных выбросов в атмосферу.

2. Алюминий не подвержен коррозии. Это свойство очень положительно сказывается на длительности «жизни» кузова и самого автомобиля. Однако не стоит полагать, что алюминий вовсе не стареет и не гниет, при определенных обстоятельствах и условиях алюминий также способен окисляться и разрушаться.

3. Алюминиевые детали прекрасно поддаются вторичной переработке. Легкость переплавки делает этот металл очень выгодным для автопроизводителей, поскольку позволяет использовать его по нескольку раз, а сам производственный процесс существенно упрощается.

4. Энергопоглощение. По сравнению со сталью, алюминий намного лучше поглощает и гасит вибрации, это также касается сильных ударов, которые алюминиевые детали поглощают на 50% лучше, не позволяя ей распространяться дальше. Этот фактор весьма важен для тех, кто ценит собственную безопасность, а также безопасность своих пассажиров.

5. Прочность и сопротивление торсионным нагрузкам. Алюминиевый кузов, как бы странно это не звучало, получается более жестким в плане скручивания, это придает автомобилю устойчивости, а также позволяет выполнять более «острые» маневры.

6. Низкая нагрузка на ходовую часть и неподрессоренные массы. Как не крути, а разница в весе положительно сказывается на износе шин, деталей ходовой части, а также придает автомобилю плавности во время движения.

7. Расход топлива. Как я уже говорил, меньшая масса предмета — это всегда меньше усилия для того, чтобы сдвинуть его с места. Поэтому алюминиевый кузов может стать причиной аномально низкого расхода топлива.

Казалось бы, «плюсов» столько ,что «минусов» просто нет. А — нет, как говорится, у медали всегда две стороны.

Из «минусов» можно выделить следующее:

1. Сложность производства. Алюминиевые детали требуют технологически сложных способов крепления (клепка, лазерная сварка, болтовые соединения), кроме того все они предусматривают наличие дорогостоящего оборудования и материалов.

2. Дорогостоящий и проблематичный ремонт. Сварка алюминиевых деталей предусматривает наличие либо лазера, либо аргонной сварки. Сам сварщик должен обладать огромным опытом сварки, поскольку именно от этого зависит исход всего ремонта и возможности или невозможности дальнейшего использования алюминиевой детали. Кроме прочих неприятностей, такие работы будут стоить в разы дороже по сравнению с аналогичными работами, но с использованием обычной сварки и стали.

3. Цена. Высокая стоимость алюминия по сравнению с обычной сталью так или иначе сказывается на конечной стоимости изделия. Авто с полностью алюминиевым кузовом может стоить в полтора-два раза дороже, чем аналогичное авто с полностью металлическим каркасом.

4. Конфигурация и формы деталей. Изготовление полностью алюминиевого кузова накладывает на производителя определенные обязанности. Например, для придания деталям прочности их приходится усиливать дополнительными ребрами жесткости или делать более объемными, в итоге конструкция может получиться не такой компактной и привлекательной как этого хотелось бы. В качестве примера и доказательства предлагаю обратить внимание на два велосипеда — полностью алюминиевый и полностью стальной. Рамы будут отличаться не только весом, но и диаметром трубок, использованных в их производстве.

5. Хорошая проводимость шума. В данном случае слово «хорошая» является недостатком, я думаю вы понимаете о чем я? Чем лучше металл проводит шум, тем больше его будет в салоне алюминиевого авто, думаю так понятнее? Такая особенность требует дополнительных слоев шумоизоляции, которая увеличивает вес автомобиля, а также стоит немалых денег. В итоге, такой автомобиль либо на конвейере получит хорошую «шумку» и вместе с тем получится более дорогим, либо будет поставляться «как есть», а все затраты на шумоизоляцию лягут на ваши плечи, и признаться потянут не мало денежных средств.

6. Ремонтопригодность. Алюминиевый кузов сложно ремонтировать, а желающих или проще сказать способных его выполнить не так уж и много, причина — алюминиевый кузов сложно ремонтировать! После удара или деформации алюминиевые детали и конструкции очень сложно восстановить, поскольку происходит нарушение структуры металла. По этой причине ремонт таких деталей или конструкций нередко просто невозможен или просто нерентабелен, и заканчивается полной заменой.

Читайте также:  Уаз patriot номер кузова

Как видите, такой, на первый взгляд, идеальный и безупречный материал имеет немало недостатков, о которых простые обыватели даже не подозревают. Наверное, именно по этой причине большинство из них так рьяно отстаивают свою точку зрения, доказывая, что алюминиевый кузов — это сущее добро и сплошной «плюс». Ну что ж, как говорится, каждому свое, надеюсь вы после прочтения данного материала не будете одним из таких «знатоков» и перед тем как купить автомобиль с алюминиевым кузовом, взвесите все положительные и отрицательные стороны этого непростого материала.

Источник статьи: http://zen.yandex.ru/media/id/5f54507dbaba894e7b8dbf5f/aliuminievyi-kuzov—horosho-ili-ploho-iscem-pliusy-i-minusy-ispolzovaniia-aliuminiia-v-avtomobilestroenii-5f991b3759810d5513e807b1

Сталь, алюминий или карбон: что лучше для кузова

Инженеры Audi начали работать над проектом в 1982 году. Идея была столь навязчива, что им потребовалась всего пара лет, чтобы с нуля продумать технологию изготовления силовой структуры кузова из алюминия и адаптировать ее под серийное производство. Основная трудность состояла в том, что модуль упругости крылатого металла втрое меньше, чем у стали: при поглощении энергии удара алюминиевая конструкция деформируется сильнее, что не вписывалось в требования по пассивной безопасности. Застолбив четыре десятка производственных патентов, немцы уже в 1988 году подготовили к серийному производству модель V8 c полностью алюминиевым скелетом. Но рынок не был готов к появлению таких машин — и «восьмерка» пошла в серию с кузовом из стали.

Эволюция

Первая серийная модель с алюминиевым несущим кузовом встала на конвейер шесть лет спустя — в 1994 году появился Audi A8 первого поколения. Кузов весил всего 249 кг (в стальном исполнении он был бы тяжелее на 40%). Уровень пассивной безопасности удовлетворял всем требованиям того времени. Чтобы компенсировать низкий модуль упругости листового алюминия, в силовой структуре рамы использовали многокамерные профили и крупные детали сложной формы с толстыми стенками, изготовленные литьем под давлением. На их долю приходилось 29% из 334 отдельных компонентов. Остальную часть составляли алюминиевые панели, добавлявшие конструкции жесткости. Примерно 75% сборочных операций выполнялось вручную.

Следующим шагом стало упрощение структуры рамы ASF с целью использовать ее для более массовых моделей и повысить уровень автоматизации производства.

В 1999 году идея воплотилась в хэтч­беке Audi A2. Количество деталей кузова сократили до 225. Некоторые из них, к примеру, центральные стойки, изготавливали из единых отливок. Доля листовых элементов была еще высока — 81%. При сборке кузова использовали преимущественно клепку, сварку в среде инертного газа (MIG) и лазерную сварку, а уровень автоматизации вырос до 80%.

Технология ASF полностью удовлетворяла новому тренду снижения массы и одновременного повышения жесткости кузова. Алюминиевый кузов Audi A8 второго поколения (2002 год) стал жестче на 61%, а весил на 29 кг меньше. Доля крупных отливок возросла с 22 до 31%, а число отдельных деталей сократилось на 20%. В сборочный процесс включили новую технологию — гибридную лазерную сварку, которая снизила до минимума деформацию элементов в местах соединений, обеспечила эффективное заполнение зазоров и высокую скорость сборки.

Комбинированную структуру рамы ASF реализовали в Audi TT второго поколения (2006 год); цель — добиться оптимальной развесовки по осям. Передний модуль кузова, средняя часть днища и верхняя часть каркаса были алюминиевыми (доля крылатого металла составила 68%), задняя часть днища и кузова, а также перегородки моторного отсека — стальными. Машина стала легче предшественницы на 90 кг, при этом жесткость кузова на кручение возросла в полтора раза. Однако пара алюминий-сталь оказалась довольно капризной. Чтобы обеспечить необходимую прочность и исключить контактную коррозию, вместо термических применили так называ­емые холодные методы соединения (заклепки, болты и клей) и изолирующий герметик.

Адаптация концепции ASF для спортивных автомобилей потребовала очередного увеличения жесткости и снижения массы. Усилия инженеров воплотились в купе Audi R8 первой генерации (2007 год). Основу каркаса составили алюминиевые профили (70%), на отливки пришлось 8%, на листовые элементы — 22%. Вдобавок применили сверхлегкие материалы. Магниевая распорка моторного отсека добавила жесткости заднему модулю кузова. Для открытой версии Spyder некоторые несущие элементы, например задние боковины и крышку моторного отсека, изготовили из углепластика.

Ужесточение требований к уровню пассивной безопасности подвигло на новые решения. Силовой каркас кузова сделали из стали, использовав высокопрочные сплавы, которые предпочтительнее алюминия в деле защиты седоков при аварии. Новую концепцию реализовали в Audi A8 третьего поколения (2010 год). Из высокопрочной стали изготовили, например, центральные стойки кузова. Вдобавок использовали алюминий тринадцати различных сортов и вакуумную отливку алюминиевых деталей, которая обес­печивает высокие механические свойства, пластичность и надежность соединений. Прочность деталей повысилась на 35%, а толщина стенок и масса уменьшились на 25%.

В дальнейшем высокопрочные стали постепенно вытесняли алюминий из силовой структуры: они обеспечивают необходимые прочностные характеристики даже при небольшой толщине стенок. Благодаря этому удалось существенно снизить снаряженную массу Audi TT нового поколения (2014 год) и одновременно увеличить жесткость кузова. Еще больше места заняла высокопрочная сталь в «клетке безопасности» Audi Q7 второй генерации (2015 год), а доля алюминия в пространственной раме упала до 41%. Вместо алюминия все чаще применяют углепластик: силовая структура кузова Audi R8 нынешнего поколения на 13% состоит из карбона.

Читайте также:  Замена кузова форд транзит

Гибридный подход

В середине лета выйдет А8 четвертого поколения. Его пространственная рама оказалась тяжелее предыдущей — 282 кг против 231. Прирост связан с более жесткими требованиями по пассивной безопасности и изначальной заточкой под альтернативный привод — в частности, гибридный. Зоны для батарей должны иметь высокую жесткость, поэтому в структуре рамы стало больше стальных компонентов. В основном это высокопрочные сплавы, использованные в «клетке безопасности» салона. Доля алюминия снизилась до 58%.

Инженеры стараются использовать нужный материал в определенном месте и в необходимом количестве, черпая вдохновение в творениях живой природы. В раме ASF сочетаются уже четыре различных материала, а в конструкции деталей активно используется бионика («конструктивные» решения, позаимствованные у природы). Природная архитектура хорошо видна в хитросплетениях развитых ребер — эти, казалось бы, хаотично расположенные перегородки на литых алюминиевых элементах повысили жесткость кузова на кручение на 24%.

Помимо привычной стали компанию алюминию составили магний и углепластик. Из магниевого сплава изготовлена распорка опор стоек передней подвески — она на 28% легче аналогичной алюминиевой на предыдущем А8, а жесткость у нее та же.

Из углепластика сделана задняя панель кузова (перегородка за спинкой сидений второго ряда). Она имеет сегменты различной толщины — в них от шести до девятнадцати слоев волокна. Каждый из слоев — это лента шириной 50 мм, которую можно укладывать под любыми углами. Благодаря комплексной ориентации волокон панель поглощает разнонаправленные нагрузки и обеспечивает аж 33% жесткости на кручение всего кузова — яркое проявление новой концепции ASF.

Инженеры Audi уверяют, что производство карбоновых элементов теперь не так уж затратно. Они разработали оригинальный процесс укладки слоев волокна, позволивший отказаться от промежуточных этапов изготовления цельных листов.

Нижняя часть перегородки моторного отсека выполнена из высокопрочной стали и имеет переменную толщину. Она сварена из трех сегментов, центральный — наиболее толстый. Такая схема обеспечивает снижение массы детали на 20% при сохранении необходимой жесткости. Переменную толщину по длине имеют и центральные стойки кузова. Это очень важно при распределении энергии удара в случае бокового столкновения.

Новые технологии алюминиевого литья позволяют получать элементы сложной геометрии, что ранее было возможно только для стали. К примеру, стенка опорной чашки заднего амортизатора благодаря развитому оребрению стала тоньше на 15% и легче на 19%. Новые сплавы также повысили прочность профилей лонжеронов на 31% и снизили их массу на 26%.

Держаться друг за друга

При сборке кузова А8 нового поколения применяют более десятка методов соединения металлов. На «холодные» (склеивание, клепка, болтовые соединения) приходится 80%, остальное — различные типы сварки. Длина клеевых швов составляет почти 100 метров. Среди новых методов — роликовая запрессовка и впервые примененная дистанционная сварка алюминия.

Роликовую запрессовку используют по периметру дверных проемов. В этих местах соединяются листы из высокопрочной и обычной стали, а также алюминия. Благодаря этой технологии ширина фланцев в зоне соединения уменьшилась на 30% — это дает более широкие дверные проемы и менее массивные стойки.

Разработанная Audi технология дистанционной сварки алюминия на 95% сокращает издержки при серийном производстве, минимизируя потребность в дорогостоящих процедурах контроля. За счет точной регулировки подаваемой энергии и положения лазерного луча значительно снижается риск появления высокотемпературных трещин. Это позволяет также уменьшить ширину фланцев на 27% и увеличить скорость сварки на 53%.

На заводе в городе Неккарзульм, где собирают новый А8, трудится около полутысячи роботов, используется 90 систем клеевой сварки, 60 машин для установки болтов, 270 клепальных установок и 90 клещей контактной точечной сварки. Степень автоматизации — 85%. В измерительном центре компьютерные томографы и система ультразвуковой визуализации следят за качеством соединений элементов. Лазерные измерительные станции проверяют каждый кузов по двум тысячам точек, а некоторые — по шести тысячам.

Обратная сторона медали

Разрабатывая и модернизируя концепцию ASF, немцы думали и о ремонтных процессах. На сертифицированных СТО есть всё необходимое оборудование для восстановления кузова после аварии, а цены на ремонт алюминиевых конструкций вполне приемлемые — это подтверждают низкие страховые ставки. Однако работа с алюминием требует особых навыков и квалификации. А когда дело доходит до соединений со сталью, количество подводных камней резко возрастает.

Забудешь, например, про изолирующий слой в соединении деталей из стали и алюминия — и контактная коррозия быстро сожрет весь узел.

Фирма Audi планирует внедрять технологии ASF и в более массовые модели. Как это изменит нашу жизнь и насколько усложнит возможный ремонт? Ответа на этот вопрос пока нет. Поживем — увидим.

Источник статьи: http://www.zr.ru/content/articles/906828-ideya-fiks/

Adblock
detector